lunes, 1 de octubre de 2012

El número de oro y otros números metálicos

A la sucesión de recurrencia:
$$u_{n+1}=pu_{n}+qu_{n-1}$$
le correspnde, en ecuaciones en diferencias, la siguiente ecuación característica:
$$x^{2}-px-q=0$$
cuya solución positiva es:
$$\frac{p+\sqrt{p^2+4q}}{2}$$
Se obtienen así los llamados números metálicos:

p 1 2 3 1 1
q 1 1 1 2 3
número oro plata bronce cobre niquel
valor $$\frac{1+\sqrt{5}}{2}$$ $$1+\sqrt{2}$$ $$\frac{3+\sqrt{13}}{2}$$ $$2$$ $$\frac{1+\sqrt{13}}{2}$$

La sucesión con p=q=1 es la conocida sucesión de Fibonacci.
La sucesión generalizada de Fibonacci es:$$G(n+1)=pG(n)+qG(n-1)$$ Y si a y b son los términos iniciales:
$$a,b,pb+qa,p(pb+qa)+qb,...$$ Operando en la expresión recurrente y tomando límites: $$\frac{G(n+1)}{G(n)}=p+\frac{G(n-1)} {G(n)}q$$ $$x=\lim_{n \rightarrow \infty} \frac{G(n+1)}{G(n)}$$ $$x=p+\frac{q}{x}$$ $$x^2-px-q=0$$
se obtiene la ecuación característica de la ecuación en diferencias.

Por tanto, el cociente de dos términos consecutivos de la sucesión de Fibonacci Generalizda tiende siempre al número metálico corespondiente.

La familia de los números metálicos fue introducida en 1995 por la matemática argentina Vera W. Spinadel.

Sigue las instrucciones de utilización del modelo de Excel que puedes descargar a continuación:
  • Se pueden modificar los parámetros p y q de la sucesión recurrente.
  • Se pueden modificar los dos primeros términos de la sucesión F0 y F1.
  • Se muestran las tablas con los 20 primeros términos y los cocientes entre términos consecutivos.
  • Se muestra la gráfica que se estabiliza hacia el número metálico correspondiente.
  • Se muestra el valor del número metálico correspondiente.
Descargar .XLS

No hay comentarios: